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ABSTRACT

Time Warp is an optimistic synchronization protocol for
parallel discrete event simulation that coordinates the avail-
able parallelism through its rollback and antimessage mech-
anisms. In this paper we present the results of a strong scal-
ing study of the ROSS simulator running Time Warp with
reverse computation and executing the well-known PHOLD
benchmark on Lawrence Livermore National Laboratory’s
Sequoia Blue Gene/Q supercomputer. The benchmark has
251 million PHOLD logical processes and was executed in
several configurations up to a peak of 7.86 million MPI tasks
running on 1,966,080 cores. At the largest scale it processed
33 trillion events in 65 seconds, yielding a sustained speed of
504 billion events/second using 120 racks of Sequoia. This
is by far the highest event rate reported by any parallel dis-
crete event simulation to date, whether running PHOLD or
any other benchmark. Additionally, we believe it is likely to
be the largest number of MPI tasks ever used in any com-
putation of any kind to date.

ROSS exhibited a super-linear speedup throughout the
strong scaling study, with more than a 97x speed improve-
ment from scaling the number of cores by only 60x (from
32,768 to 1,966,080). We attribute this to significant cache-
related performance acceleration as we moved to higher scales
with fewer LPs per core.

Prompted by historical performance results we propose
a new, long term performance metric called Warp Speed
that grows logarithmically with the PHOLD event rate. As
we define it our maximum speed of 504 billion PHOLD
events/sec corresponds to Warp 2.7.

We suggest that the results described here are signifi-
cant because they demonstrate that direct simulation of
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planetary-scale discrete event models are now, in principle
at least, within reach.

Categories and Subject Descriptors
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Experimentation, Performance
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1. INTRODUCTION

In 2009, the Time Warp synchronization protocol demon-
strated highly efficient strong scaling (i.e., model size held
constant while processor or core count is increased) using
Rensselaer’s Optimistic Simulation System (ROSS) [2]. Here,
we extend those results by demonstrating continued good
scaling behavior at much larger scales on the new Blue Gene/Q
supercomputer, Sequoia, located at Lawrence Livermore Na-
tional Laboratory (LLNL). Sequoia is dedicated to the Na-
tional Nuclear Safety Administrations’ (NNSA’s) Advanced
Simulation and Computing (ASC) program for stewardship
of the nation’s nuclear weapons stockpile, which is a joint
effort by LLNL, Los Alamos National Laboratory and San-
dia National Laboratories. Jefferson’s Time Warp [20] is an
optimistic synchronization protocol. The key idea behind it
is to allow the parallel logical processes of the simulation to
execute freely and speculatively as much as possible, and to
synchronize using rollback and anti-messages when neces-
sary to correct for events executed out of order.

Since 2009, ROSS has been used in a number of large-scale
modeling and simulation efforts. Most recently it has been
used to model next generation exascale storage systems [23,
25]. Additionally, Liu et al. [24] created one of the first mas-
sively parallel discrete event models of a multi-dimensional



torus network that is capable of model sizes in excess of 1 bil-
lion nodes. More recently, Mubarak et al. [27] demonstrated
strong scaling of a highly accurate Dragonfly network model
using both Blue Gene/P and Blue Gene/Q supercomputers.
The dragonfly network is particularly interesting because of
the use of its global channel links. One might think that
these links would have the potential to induce excessive cas-
cading rollbacks, but that was not the case. Using 65,536
MPI tasks mapped to 16,384 Blue Gene/Q cores, the ef-
ficiency was over 99% for a dragonfly network configured
with 50 million nodes, and yielded an event rate in excess of
1 billion events/second. Similarly, Gonsiorowski et al. [16]
demonstrate over 130x performance improvement for a 1 bil-
lion gate circuit model based off the OpenSparc T2 processor
design when using 1024 Blue Gene/L processors compared
with a baseline performance of a single Xeon processor. The
rollback mechanism has often been viewed as the limiting
factor in the Time Warp mechanism because the number
and depth of rollbacks is usually not explicitly bounded [26],
so that the rollback behavior is sometimes characterized as
exhibiting “risk” or even considered (somewhat colorfully) as
having a “dark side” [28]. However, our results to date sug-
gest that the potential for complex rollback dynamics were
not realized and ROSS continues to demonstrate highly ef-
ficient and scalable results in tackling some of today’s most
challenging discrete event simulations.

The key question asked in this this paper is: How much
more scalability is possible? To address this we conducted a
detailed experimental study of ROSS executing the PHOLD
benchmark [13] model on two systems: the two-rack 32,768-
core Blue Gene/Q located at Rensselaer’s Computational
Center for Nanotechnology Innovations (CCNI) supercom-
puter and Sequoia, a 120-rack, 1,966,080-core Blue Gene/Q
supercomputer, currently the second-ranked supercomputer
in the world according to the Top 500 list. In the next
Section (Section 2), we describe the Blue Gene/Q architec-
ture, followed by the design of ROSS in Section 3 and our
proposed Warp Speed performance metric in Section 4. Sec-
tion 5 presents the detailed performance results from both
computing platforms. Section 6 places these results in the
context of prior research and provides some thoughts on
what new extreme-scale models this level of performance
will enable. Section 7 summarizes these results, draws some
conclusions and lays out some paths for future research.

2. THE BLUE GENE/Q ARCHITECTURE

The Blue Gene/Q is the third generation system in the
IBM Blue Gene supercomputer family with the Blue Gene/L
and /P coming previously in 2004 and 2007, respectively.
The Blue Gene/Q has made a substantial leap in compu-
tational capabilities over these previous generations. The
largest systems are currently the 48 rack Mira system lo-
cated at Argonne National Laboratory (ANL) and the 120
rack Sequoia system located at LLNL. (Sequoia was recently
split into a 96-rack system that retains the name Sequoia and
a 24-rack system named Vulcan).

The Blue Gene/Q’s A2 processor [11] (one per Blue Gene/Q
node), shown in Figure 1, is a 45 nm chip comprised of 18
cores (PU’s in the Figure) running at 1.6 GHz. The first
16 cores are exclusively used to execute user-level compute
tasks while a 17th core is reserved to perform OS functional-
ity. To improve overall processor manufacturing yields, the
18th core is only enabled if during final testing one of the
other cores fails to operate correctly. The dedicated OS core
design enables the use of a much more capable compute-node
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Figure 1: IBM Blue Gene/Q A2 18-way processor
layout diagram from HPCWire via Google Images.

OS than prior Blue Gene systems, and supports mmap, shared
libraries, etc) without introducing OS jitter [3]. Each core
supports up to 4 hardware thread or MPI task contexts,
with each context having a full complement of thirty-two
64-bit registers. Each core supports up to 4-wide double
precision SIMD calculations. In terms of execution models,
the Blue Gene/Q supports up to 64 MPI tasks per node (up
to 4 tasks per core) or a mix of MPI tasks and threads. The
peak performance of the A2 processor is 204.8 gigaflops, and
it consumes up to 55 watts of power. Blue Gene/Q nodes
do not have GPUs as some other large scale supercomputer
nodes do. In general, since the ROSS/PHOLD benchmark
does not make much use of floating point operations, floating
point performance is not a performance or scaling barrier.

A fully-connected crossbar switch connects all 16 cores
to the 32 MB, L2 cache (realized as 16, 2 MB L2 cache
units), thus all cores have a uniform cache-memory access.
The amount of memory is fixed on each compute node at
16 gigbytes, with a total bandwidth of 42.6 GB/sec. In
contrast to the Blue Gene/P, which only has four PowerPC
450 cores operating a 850 MHz, resulting in 13.6 gigaflops,
the Blue Gene/Q provides a 15x peak floating point perfor-
mance boost. However, a potential barrier to reaching that
performance increase is the available node memory band-
width. The Blue Gene/P provided 13.6 GB/sec which yields
a memory bandwidth to FLOP ratio of 1. However, the Blue
Gene/Q has a memory bandwidth to FLOP ratio of only
0.21.

Lowering this ratio even further relative to that of the Blue
Gene/P is the doubling of the address space size from 32 bits
on the Blue Gene/P to 64 bits on the Blue Gene/Q. Thus,
for pointer intensive applications like ROSS, the effective
pointer access rate has only improved by a factor of 1.5x
(((42.6 GB/s/64 bits)/(13.6 GB/s/32 bits)) in going from
the Blue Gene/P to the Blue Gene/Q. To help mitigate the



lower overall memory bandwidth to FLOP ratio, the Blue
Gene/Q provides an L1 cache prefetch engine for each core
along with scalable atomic operations.

Connected to each node is a five dimensional (5-D) torus
network with 10 serial links per node, each capable of send-
ing and receiving 2 GB/sec [8]. An 11th link is dedicated to
I/0 and connects to the I/O node set. Unlike previous Blue
Gene systems which have a dedicated I/O node for a set of
compute nodes (e.g., pset), the Blue Gene/Q has a more
flexible approach which pulls the I/O nodes outside of the
primary compute fabric. In this configuration, up to eight
I/0 nodes, identical to the compute nodes from a hardware
perspective, are grouped into a drawer. A single rack of Blue
Gene/Q can drive up to 8 drawers (64 nodes) of I/O nodes.
Each I/O node can service about 2 GB/sec of parallel file
system data.

3. DESIGN OF ROSS

ROSS is an open source, massively parallel discrete event
simulation engine supporting both YAWNS-like conservative
and Time Warp optimistic event scheduling algorithms [5].
(See: http://ross.cs.rpi.edu for download details.) A
central feature of ROSS’ overall design has been its efficient
use of memory and cache-aware implementation. In partic-
ular, taken from its previous shared-memory implementa-
tion [4], ROSS uses pointers to data structures as opposed
to indexing into arrays. For a detailed discussion of ROSS’
data structures and core algorithms used to process events,
including GVT, we refer the reader to [2]. In this paper, we
focus more on memory usage in ROSS and the overall event
processing workflow.

In the current version of ROSS, MPI is used to spawn an
instance of the model (MPI task), including all the functions
for event scheduling and processing, rollback, and GVT com-
putations. During initialization, we allocate space for the
logical process (LP) state, all events (network and applica-
tion), random number generator (RNG) states, and rollback
support data structures. In this version of ROSS the MPI
tasks use no internal threading. ROSS yields the best per-
formance on the Blue Gene/Q system when there are four
MPI tasks per core, corresponding to the four hardware con-
texts in each core. Thus, a node on the Blue Gene/Q will
support 64 MPI tasks, each running one instance of ROSS
and hosting many logical processes (LPs) of the simulation
model (in this case, PHOLD).

Once memory allocations are complete, ROSS initializes
each LP by first computing the correct random number gen-
erator (RNG) seed states based on the LP’s id. The RNG
is linear congruential with a period of 2'2!. Each seed takes
128 bits, represented as four 32 bit integers [22]. To ensure
that RNG seeds do not correlate, the start state of each
seed is 270 calls apart from the previous seed. Additionally,
care is taken such that for any fixed LP count, the seeds
are deterministicly computed irrespective of the processor
count. This ensures that models runs will be deterministic
and identical at different scales in a strong scaling study.
Finally, we note that ROSS can support multiple RNGs per
LP to avoid correlations across activities within an LP that
would otherwise be independent.

Next, ROSS invokes the init function pointer for each
LP to initialize the model’s state and to schedule the start
set of events for that LP. In order to schedule a new event,
the application allocates a new event from the free event
list. Each MPI task has its own free event list. During
initialization all start events must be sent to “self” because

not all LPs are initialized and installation of the mapping
function between LPs and MPI tasks may not be complete.

Once all the LPs have have completed their initialization,
the optimistic or conservative event scheduler is invoked. Fo-
cusing on the optimistic scheduler, there are two key param-
eters that control its behavior. The first is GVT_interval,
which is the number of times through the main scheduler
loop before a GVT computation will be started. As de-
scribed in [2], GVT calculation in ROSS is a synchronous ac-
tivity that uses the MPI_Allreduce collective operation. The
second key scheduler parameter is batch. Inside the main
scheduler loop, batch events are processed before polling
the network for remote events and checking to see if a GVT
computation is needed.

Polling for remote events uses a combination of asyn-
chronous MPI_Iprobe and MPI_Irecv operations. Between
successive GVT computations, on average GVT_interval X
batch events will be processed by each MPI task. On the
receipt of a remote message (from another task), a container
is allocated pointing to the new event buffer. This container
is placed in an AVL Tree [12] to facilitate fast event cancel-
lation when an anti-message arrives. AVL Trees provide a
very fast search operation, using the anti-message’s times-
tamp, sender MPI rank, and event age as a key to find the
event that must be canceled. If that event has already been
processed, then the LP will be rolled back to the event just
prior to the canceled event in virtual time order. The ROSS
rollback mechanism uses a reverse computation [6] mecha-
nism in which the model supplies a reverse event handler
that reverts the LP state to the point before the event being
rolled back, including the states of any RNGs that were used
during event processing.

Each LP in the course of processing an event can schedule
new events to be processed at some future point in virtual
time. If the newly scheduled event is local (i.e, the destina-
tion LP is mapped to the current MPI task), then that event
is immediately placed in the task’s priority queue, which is
implemented using a Splay Tree [35]. Otherwise, the event
and its model data are sent in a contiguous memory block
over MPI using the asynchronous MPI_Isend. ROSS man-
ages its own MPI_request memory buffers which are used for
the MPI_Isend and MPI_Irecv operations to ensure a suffi-
cient number of MPI_Isend and MPI_Irecv are posted/in
progress at all times.

Whenever a new GVT value is computed, all events with
timestamps less than GVT are fossil collected. To speed up
this process, ROSS creates a special container data structure
called a kernel process (KP) which holds all the processed
events in single linked list for a group of LPs. This approach
reduces the amount of search require to find old event data
to reclaim. Typically, each MPI task will have between 8
and 64 KPs.

4. WARP SPEED

There is a growing history of work on massively parallel
simulation on state of the art supercomputer systems. The
first PDES performance study to focus on the Blue Gene
supercomputer platform is [30], in which PHOLD perfor-
mance results for conservative, optimistic and mixed-mode
PDES protocols on the Blue Gene/L were presented using
the psik parallel discrete event simulator. The next two
Blue Gene/PDES performance studies [19, 2] demonstrated
the performance of ROSS as it was in 2008. These stud-
ies were the first to demonstrate event rates from the 100’s
of millions to billions of events per second, and scalabil-
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Figure 2: CCNI: PHOLD event rate performance as
a function of MPI tasks for configurations of 1 rank
per core, 2 ranks per core and 4 ranks per core.
All runs are configured with 5,242,880 LPs, 8 batch
events, 512 GVT_interval and 0.10 lookahead.

ity to 65,536 cores. Additionally, Perumalla demonstrated
epidemic models [32] using 65,536 Cray XT5 processors,
and in [31] he demonstrated simulation of massively paral-
lel MPI programs (with millions of virtual MPI tasks) using
over 216,000 CrayXT 5 cores. Carothers and Perumalla [5]
provided experimental results and guidance for determining
when conservative or optimistic synchronization should be
used for massively parallel discrete event simulation.

Thus, since 2007, our community has observed an event
rate growth in PHOLD from 100 million to over 500 billion
as we described in Section 5. With a nearly 5000x perfor-
mance improvement in only 6 years, plotting historic speeds
no longer makes sense on a linear scale. We suggest that
it is time to move to a logarithmic simulator speed met-
ric, similar to the Richter scale for earthquake amplitude,
or to decibels used in many engineering domains. We pro-
pose that any discrete event simulator, whether conservative
or optimistic, that achieves an overall sustained (net) event
rate on the PHOLD benchmark of p events per second be
described as achieving Warp w speed where

w = logio(p) — 9

Observe that a Warp speed is less than zero for PHOLD
event rates less than 1 billion per second. To obtain a Warp
10.0 would require the ability to process 10 exa-events, or
10'° events per second.

S. EXPERIMENTAL RESULTS

Our experimental study used two separate parallel sys-
tems. The first is a two-rack, 32,768-core, 418 teraflop Blue
Gene/Q system located at Rensselaer’s Computational Cen-

8e+09 |
—+— 10% Remote
-—-%--- 25% Remote
----%--- 50% Remote
7e+09 [ ... 100% Remote -

6e+09

Se+09

4e+09

3e+09

Event Rate (events/second)
i

2e+09

1e+09 : [ S -

J
32k 64k 128k
MPI Tasks

Figure 3: CCNI: PHOLD event rate performance
as a function of MPI tasks for configurations with
10%, 25%, 50% and 100% remote communication
fraction. All runs are configured with 5,242,880 LPs,
8 batch events, 512 GVT_interval and 0.10 lookahead.

ter for Nanotechnology Innovations (CCNI). This system
has 32,768 cores, 32 terabytes of RAM and is configured
with 64 I/O nodes (8 drawers) making it one of the most
1/0 rich Blue Gene configurations for its size fielded today.
The CCNI's Blue Gene/Q system is configured with driver
level VIR2MO Efix 13. This driver provides low level func-
tionality to the Blue Gene/Q system especially related to
the Parallel Active Message Interface(PAMI) [7, 21]. The
MPI implementation uses PAMI to efficiently transmit mes-
sages within the 5-D torus network. The ROSS compiler
settings used for all Blue Gene/Q runs were: -qflag=i:i
-qattr=full -03.

The second system was the Sequoia Blue Gene/Q system
located at LLNL. Most of the time this system has been, and
will be, comprised of 96 racks, 1,572,864 cores and over 1.5
petabytes of RAM, with a peak performance of 20 petaflops.
In that configuration it is currently the number #2-ranked
supercomputer in the world on the Top500 list (see: top500.
org).

However, for a brief period during which this study was
conducted, Sequoia was joined with the Vulcan 24-rack sys-
tem to form a single 120-rack system with 1,966,080 cores
and nearly 2 petabytes of RAM. While the compiler on Se-
quoia is the same as the CCNI system, the Sequoia exper-
iments used two different driver levels in the OS: V1R2MO
Efix 13 and V1R2MO Efix 15. The Efix 15 driver enabled
MPI to scale to 96 and 120 racks, which was not possible
with Efix 13. Additionally, for the Efix 15 runs, we had to
add the following set of environment variable options in or-
der to force PAMI and MPI to allocate the right amounts of
internal memory:

e BG_MAPCOMMONHEAP=1
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Figure 4: CCNI: PHOLD Event Efficiency (see text
for definition) as a function of MPI tasks for con-
figurations with 10%, 25%, 50%, and 100% remote
communication fraction. For all data points, each
node executes 64 MPI tasks. All runs are configured
with 5,242,880 LPs, 8 batch events, 512 GVT_interval
and 0.10 lookahead.

e BG_SHAREDMEMSIZE=128
e PAMI_CLIENT_SHMEMSIZE=5M
e PAMI_GLOBAL_SHMEMSIZE=70M

e PAMI_SHMEM_NNODE_THRESHOLD=131072

The PHOLD benchmark model is a derivative of the clas-
sic HOLD model [37] that was extended for parallel discrete
event simulation in [13] and for reverse computation in [6].
We varied a number of ROSS and runtime configuration
parameters, including: batch, GVT_interval, MPI tasks
per core, and the percentage of remote communications.
Each PHOLD event either schedules an event for “self” or
for some other randomly selected LP, in either case with
an exponentially-distributed time-stamp increment having
mean of 1.0. An optional static nonzero parameter, looka-
head, can be added to the time-stamp increment to enable
direct comparison between optimistic schedulers (which can
handle events scheduled with arbitrarily small positive de-
lays) and conservative schedulers (which require a predeter-
mined positive (nonzero) lower bound on event delays).

All Sequoia runs were configured with exactly 251,658,240
LPs, 16 events per LP, 8 KPs per MPI rank, 10% remote
communication fraction, 0.1 lookahead, 8 batch, 512 GVT_-
interval, and 4 MPI tasks per core. The 10% remote
fraction means that 90% of the events that each LP sched-
uled were “local” (i.e., scheduled for itself) and 10% were
“remote” (i.e., scheduled for a different LP uniformly ran-
domly selected from among all of the others). In case anyone
wants to do a similar scaling experiment with a conservative
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synchronization algorithm we introduced a small amount of
lookahead, 0.1, although the Time Warp algorithm makes
no use of this. We set the mean of the exponential part of the
future event time distribution to 0.90. The event itself does
no substantial computational work other than random num-
ber generation for selecting the destination LP and future
time-stamp. At the largest scale of 120 racks and 7,864,320
MPI ranks this yields a relatively small workload of exactly
32 LPs and an average of 512 live events per MPI rank.

We first present the results from the CCNI Blue Gene/Q
and followed by our performance results from Sequoia.

5.1 CCNI Blue Gene/Q Results

These early CCNI tests were intended both to provide
comparison to the Sequoia results at small scales and to
mimic the same LP workloads that Sequoia would have at
96 racks so that we might anticipate what to expect at the
largest scale. For the CCNI tests all runs were configured
with 5,242,880 LPs, 8 batch events, 512 GVT_interval and
0.10 lookahead.

In the first series of experiments, we investigated the im-
pact of over-committing MPI tasks to each Blue Gene/Q
core. Recall that the A2 processor supports up to four hard-
ware thread contexts per core. Thus, it is possible to sup-
port 1, 2 or 4 MPI tasks or threads per core. Figure 2
reports the PHOLD event rate performance as a function
of the total number of MPI tasks for run sizes of 512, 1024
and 2048 nodes, which correspond to using a 1/2 rack, 1
full rack and 2 full racks. Unlike previous hyper-threaded
architectures, such as those used by Intel [38], we observe
nearly linear event rate performance improvement as each
node is configured to use 2 or 4 threads. We do observe less
than linear scaling when going from 2 to 4 threads but it
is significantly better than we have observed on our hyper-
threaded platforms. The peak event rates are nearly 2 bil-
lion/sec, 4 billion/sec and 8 billion/sec for 32,768, 65,536
and 131,072 MPI tasks respectively. In comparison to our
previous peak PHOLD performance of just over 12 billion [2]
on 65,536 Blue Gene/P cores, we observe here that this par-
ticular model has 5x the LPs and events, leading to greater
overheads in the priority queue and event processing because
of the larger memory footprint (i.e., more cache misses).

The next two figures report the PHOLD event rate perfor-
mance (Figure 3) and efficiency (Figure 4) as a function of
the MPI Task count, varying the remote event percentages.
While each remote event percentage curve has its own scal-
ing slope, we do not observe any decrease in performance as
the node count increases. This suggests that the 5-D torus
network of the Blue Gene/Q enables the PHOLD model to
continue to scale up to at least 131,072 MPI tasks. This is
in spite of the large number of remote events; in one case
100% of the events are scheduled to remote LPs. The peak
event rates at 131,072 MPI tasks for 10%, 25%, 50% and
100% remote event communications are 8 billion, 5 billion,
3 billion, and nearly 2 billion, respectively. In terms of over-
all speedup, we observe that the slope of the 10% remote
communication line is super-linear. We attribute this scal-
ability to better cache performance as more cores are used
for the same size problem.

The PHOLD model efficiency mirrors the event rate per-
formance as shown in Figure 4. Here, we observe that the
overall efficiency ranges between 98% down to 93%. This
suggests the Blue Gene/Q network is quickly moving mes-
sages between LPs so that rollback rates are low even at
high remote event communication rates.



| Cores | MPI Tasks | Eventsrotal | Fventsrp | Eventsye | Efficiency | Time (sec) | Speed | Warp Speed |

16,384 65,5636 | 3.316E+13 | 1.750E+11 | 3.298E+13 0.9947 14964.2 | 2.20E+09 0.34
16,384 65,536 | 3.316E+13 | 1.750E+11 | 3.298E+13 0.9947 15027.2 | 2.20E+09 0.34
16,384 65,536 | 3.316E+13 | 1.750E+11 | 3.298E+13 0.9947 15027.7 | 2.19E+09 0.34
32,768 131,072 | 3.325E+413 | 2.678E+11 | 3.298E+13 0.9919 6799.6 | 4.85E+09 0.69
32,768 131,072 | 3.325E413 | 2.678E+11 | 3.298E+13 0.9919 6822.7 | 4.83E+09 0.68
32,768 131,072 | 3.325E+413 | 2.678E+11 | 3.298E+13 0.9919 6821.5 | 4.84E+09 0.68
65,536 262,144 | 3.339E+13 | 4.054E411 | 3.298E413 0.9879 3128.5 | 1.05E+10 1.02
65,536 262,144 | 3.339E+13 | 4.054E4-11 | 3.298E4-13 0.9879 3128.2 | 1.05E+10 1.02
65,536 262,144 | 3.339E+13 | 4.054E411 | 3.298E413 0.9879 3127.6 | 1.05E+10 1.02
131,072 524,288 | 3.358E+13 | 5.988E411 | 3.298E4-13 0.9822 1445.1 | 2.28E410 1.36
131,072 524,288 | 3.358E+13 | 5.988E+11 | 3.298E+13 0.9822 1447.1 | 2.28E+10 1.36
131,072 524,288 | 3.358E+13 | 5.988E411 | 3.298E413 0.9822 1447.1 | 2.28E410 1.36
786,432 3,145,728 | 3.455E+13 | 1.562E+12 | 3.298E+13 0.9548 202.6 | 1.63E+11 2.21
786,432 3,145,728 | 3.455E+13 | 1.563E+12 | 3.298E+13 0.9548 200.7 | 1.64E+411 2.22
786,432 3,145,728 | 3.455E413 | 1.562E+12 | 3.298E+13 0.9548 200.8 | 1.64E+11 2.22

Table 1: SEQUOIA: Raw PHOLD performance data for 1, 2, 4, 8, and 48 rack runs, each rack containing
16,384 cores. All runs were configured with 251,658,240 LPs, 16 circulating events per LP, 8 KPs per MPI
task, 10% remote communication fraction (fraction of events sent to random non-self LP), 0.1 lookahead, 8
batch, 512 GVT_interval and 4 MPI tasks per core. The net number of events processed for all runs was exactly
32,984,968,283,642 (i.e., 32 trillion), since the runs were perfectly deterministic. Cores is the total number
of Sequoia cores (16 per node) used in each execution; M PITasks is the total number of MPI Tasks used,
which in all cases is 4x the number of Cores; Fventsroiq is the total number events executed, including those
rolled back; Fventsgp is the number of events rolled back; Fventsnye: is the number of net events executed,
i.e. events committed, not rolled back; Ef ficiency is Eventsnet/Eventsrotar; Time is total wallclock execution
time in seconds; Speed is Eventsne:/Time and Warp Speed is logio(Speed) — 9 All runs were executed between
01/24/2013 and 02/05/2013 under driver Efix #13.

Cores | MPI Tasks | Eventsrotar | Eventsrp | Eventsye: | Efficiency | Time (sec) Speed | Warp Speed
32,768 131,072 3.325E+13 | 2.679E+11 | 3.298E+13 0.9919 6377.8 | 5.17E+09 0.71
32,768 131,072 3.325E+13 | 2.679E+11 | 3.298E+13 0.9919 6378.3 | 5.17TE+09 0.71
65,536 262,144 3.339E+13 | 4.063E+11 | 3.298E+13 0.9879 2912.4 | 1.13E+10 1.05
65,536 262,144 3.339E+13 | 4.053E+11 | 3.298E+13 0.9879 2912.4 | 1.13E+10 1.05

131,072 524,288 3.358E+13 | 5.986E+11 | 3.298E+13 0.9822 1323.8 | 2.49E+10 1.40
131,072 524,288 3.358E+13 | 5.986E+11 | 3.298E+13 0.9822 1323.0 | 2.49E+10 1.40
393,216 1,572,864 | 3.407E+13 | 1.084E+12 | 3.298E+13 0.9682 379.7 | 8.69E+10 1.94
393,216 1,572,864 3.407E+13 | 1.084E+12 | 3.298E+13 0.9682 379.7 | 8.69E+10 1.94
786,432 3,145,728 3.454E+13 | 1.554E+12 | 3.298E+13 0.9550 174.7 | 1.89E+11 2.28
786,432 3,145,728 3.454E+13 | 1.554E+12 | 3.298E+13 0.9550 174.7 | 1.89E+11 2.28
1,572,864 6,291,456 3.521E+13 | 2.222E+12 | 3.298E+13 0.9369 82.6 | 3.99E+11 2.60
1,572,864 6,291,456 3.521E+13 | 2.222E+12 | 3.298E+13 0.9369 82.6 | 3.99E+11 2.60
1,966,080 7,864,320 3.547TE+13 | 2.490E+12 | 3.298E+13 0.9298 65.4 | 5.04E+11 2.70
1,966,080 7,864,320 3.548E+13 | 2.490E+12 | 3.298E+13 0.9298 65.5 | 5.04E+11 2.70

Table 2: SEQUOIA: Raw PHOLD performance data for 2, 4, 8, 24, 48, 96 and 120 rack runs. All runs were
configured with 251,658,240 LPs, 16 events per LP, 8 KPs per MPI task, 10% remote communications, 0.1
lookahead, 8 batch, 512 GVT_interval, and 4 MPI tasks per core. The net events processed for all runs was
32,984,968,283,642 (i.e., 33 trillion), and was fully deterministic across all job runs. Column headings have
the same meaning as in Table 1. Runs were executed between 03/08/2013 and 03/11/2013 under driver Efix

#15.

5.2 Sequoia Blue Gene/(QQ Results

As shown in Tables 1 and 2, we report the raw perfor-
mance data collected from two distinct series of strong scal-
ing runs on Sequoia. In Table 1, we show data performance
for runs on 1, 2, 4, 8, and 48 racks for 3 runs each. The
reason for the unusual rack scaling (not strictly powers of 2)
is that these are sweet spots for the Blue Gene/Q 5-D torus
network. In some other configurations the torus becomes

only a mesh (e.g., without wraparound) which can increase
message latency. However, the configurations above were
always using a full torus.

The performance we observed showed very high efficien-
cies and record breaking event rates. For example, at 1 rack
(65,536 MPI tasks), the event rate is just above 2.2 billion
and requires just over 4 hours (4hr, 10mins) to execute the
32 trillion events. However, as we increase the core count,
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Figure 5: SEQUOIA: PHOLD event rate perfor-
mance as a function of Blue Gene/Q racks for con-
figurations of 2, 8, 24, 48, 96 and 120 racks. The
linear performance curve uses the 2 rack event rate
performance as a baseline. Event rate data taken
from Table 2.

we observe PHOLD’s event rate not only increasing steadily,
but doing so at a super-linear pace. At two racks, the event
rate has more than doubled to 4.85 billion, and at eight racks
the event rate is more than quadrupled again to 22.8 billion.
At 48 racks the event rate is 164 billion, and the speedup
from 1 to 48 racks is 74x. The overall simulator event effi-
ciencies reflect the super-linear performance with a range of
99% down to 93%. These experiments ran during the time
window of 01/24/2013 to 02/05/2013 when Sequotia’s driver
level (as designated by IBM) was Efix #13.

The second series of experiments shown in Table 2 were
conducted between 03/08/2013 and 03/11/2013. At this
time, Sequoia was running a much updated driver, Efix #15,
that enabled MPI to execute on 96 and 120 rack config-
urations at four tasks per core. Here we observe an un-
precedented level of performance. First, Efix #15 version of
the driver has improved the lower rack count performance
when compared with that shown in Table 1. For example,
the 2-rack performance improved from 4.85 to 5.17 billion
events/second which is nearly a 7% increase. Even at the
higher end, our 48 rack performance has improved by over
6% (from 164.5 to 174.7 billion events/sec). However, the
piéce de résistance comes at 96 and 120 racks. Here, we ob-
serve event rates of 399 billion and 504 billion respectively,
with an overall range speedup (2 to 120 racks) of 97x, and
both with an event efficiency of nearly 93%. Figure 5, plots
the Sequoia’s event rate performance compared to strictly
linear performance scaling using the 2-rack performance as
the base.

Now, a critical question is what accounts for the high
amount of super-linear speedup across both sets of exper-
iments? The answer lies with the A2 processor’s unique

| Data struct | Size | Used Count |  Subtotal |
PE struct | 520 bytes 1 0.5 KB
KP struct | 104 bytes 8 0.8 KB
LP struct | 232 bytes 40 9.3 KB
Network data 8 bytes 7250 58 KB
AVL Tree | 40 bytes 7250 290 KB
Event + model | 128 bytes 7250 928 KB

| Total | | | 1.287 MB |

Table 3: ROSS Memory Usage at 96 racks for a
single MPI rank. Total memory working set per
node is just 82 MB.

memory hierarchy. Recall that the memory bandwidth is
only 42.6 GB/sec. However, as more Blue Gene/Q racks are
used to execute the PHOLD model, more and more of the
model code and data fits within the 32 MB L2 cache on each
node. This cache operates at 563 GB/sec, which is over 13x
faster than main memory [11]. The memory usage of ROSS
for the PHOLD model at 96 racks is shown in Table 3. Each
MPI rank consumes about 1.3 MB, for a total node memory
requirement of just over 82 MB. A similar analysis shows a
requirement of only 65 MB at the 120 rack scale. With 32
MB of L2 cache available and a small working set of less than
82 MB, coupled with an advanced data prefetching engine,
ROSS is largely executing out of L2 cache at these extremely
high core counts.

These super-linear results also underscore the significant
capabilities of the Blue Gene/Q network. For the 10% re-
mote communications, each LP is sending to other randomly
chosen LPs located far apart within the 5-D torus network.
On a 1 million-node, 5-D torus network, remote messages
will travel on average 1/4 of the torus circumference in each
of the 5 dimensions. Since the circumference is 16 hops,
that is a mean of 5x4 = 20 hops. Thus, we are observing
substantial super-linear performance in spite of a workload
exhibiting a nearly worst-case, globally random communica-
tion pattern.

In comparison to previous Blue Gene/P results [2], while
some degree of super-linear performance was observed, the
high degree of super-linear performance shown here was not
observed. Additionally, we note that the previous Blue Gene/P
results yielded very high efficiency at 16 LPs per MPI ranks
however at 8 LPs per MPI rank with 128K Blue Gene/P
cores the amount of parallelism was insufficient and a cas-
cade of rollbacks ensued, lowering the overall event rate
performance. Consequently, we believe with our current
PHOLD configuration there is additional parallelism to ex-
ploit for even greater performance. We observe that if a
240 rack Blue Gene/Q system where available, the current
PHOLD model would still have 16 LPs per MPI rank and
thus have a good opportunity to scale to an event rate of
just over 1 trillion events per second, assuming only a linear
increase in performance.

6. HISTORY & DISCUSSION

The PHOLD benchmark has a long history going back to
Fujimoto’s Time Warp synthetic workload paper [13]. In
that original paper, no event rate data was presented, but a
sizable 54x speedup on a 64-way BBN Butterfly system was
reported. Most papers from that era reported only speedup
relative to a sequential execution, and did not single out



Year | Author/Publication | Event Rate | Warp

2010 | Carothers, et al. [5
2011 | Perumalla, et al. [29
2013 This Paper

3,000,000,000 0.48
10,000,000,000 1.00
504,000,000,000 2.70

1990 Fujimoto [13] N/A | N/A
1995 | Fujimoto, et al. [14] 101,000 | -3.99
1996 Hao, et al. [18] 95,000 | -4.02
2000 | Carothers, et al. [4] 375,000 | -3.43
2005 Chen, et al. [10] 228,000,000 | -0.64
2006 Bauer, et al. [1] 10,000,000 | -2.00
2007 Perumalla [30] 214,000,000 | -0.67
2008 Holder, et al. [19] 853,000,000 | -0.07
2009 Bauer, et al. [2] 12,260,000,000 1.09

]

]

Table 4: PHOLD History: Raw PHOLD event rate
data from 1995 through present day. Note, the
PHOLD configurations across these prior results
vary.
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Figure 6: PHOLD History: PHOLD event rate (left
side) and Warp number (right side) as a function of
the year the performance data was published.

total event rate as a key metric. On closer examination of
reported performance results, we were able to find a num-
ber of event rate results going all the way back to 1995, as
shown in Table 4. We hasten to note that we are only look-
ing at PHOLD performance and do not mean to diminish
the significance of high performance obtained using other
models. For example, in 1994 Greenberg, et al. [17] devel-
oped a conservative synchronization algorithm that could
leverage the fast SIMD features of the MasPar-1, 16K core
multiprocessor system for modeling dynamic channel assign-
ment schemes in wireless telephone networks. They obtained
a speedup of 120x over a optimized serial implementation.
Similarly in 2003, Fujimoto et al. [15], used 1536 processors
from the Lemieux cluster at the Pittsburgh Supercomput-

ing Center on a synthetic 10 million node campus network
topology and created a traffic model that produced over 106
million network packet events per second.

Previously published results using PHOLD were usually
measured on small clusters consisting typically of less than
32 nodes. It was not until Chen et al. [9] that anyone used a
supercomputer of significant power for its day and reported
the PHOLD event rate performance. In that case it was
also using the Lemieux cluster, consisting of 750, 4-way Al-
phaServer processors. Of course the historic PHOLD config-
urations are not directly comparable given the array of dif-
ferent hardware systems and PHOLD configurations. Still,
overall, from 1995 to the present, the event rate performance
of PHOLD has increased by a factor of around 5,000,000.
The exponential performance improvement is shown in Fig-
ure 6. Here, both the event rate and Warp number are
shown on separate y-axises. We observe in both this Figure
and Table 4 that the peak Warp Speed has increase from
-4.0 in 1995 to 2.70 based on the data presented here.

With a massively parallel simulator that is capable of
Warp 2.7 (e.g., 504 billion events-per-second), what big,
hairy, audacious, problems (BHAPs) might we now contem-
plate addressing? We submit that the Internet in all its
vertical and horizontal architecture has become an integral
stratum of what one might call the human sustainability net-
work (HSN). The HSN is really the network of networks on
which all of our collective daily lives depend. This includes
power networks (e.g., smart grids), fresh water networks,
fuel/pipeline networks, transportation networks (air, land
and sea vehicles), retail networks (Walmart, Target), finan-
cial networks (markets, banks, credit and insurance com-
panies), manufacturing networks, and social networks. Be-
cause of the coupling of all of these networks by the Inter-
net (via wired, wireless, cellular and satellite communication
systems), we are now seeing how a drought in India can lead
to a power outage impacting over 600,000,000 people [33];
how errant code in a trading bot results in a stock mar-
ket flash crash [36]; and how the housing bubble results in
a freeze of credit markets leading to the inability of indus-
trial giants like General Electric to finance their daily oper-
ations [34]. All these networks are interconnected at various
vertical and horizontal levels and it appears that their level
of interdependence will only grow in the future.

One way of looking at the significance of the results we
report here is that direct simulations of planetary-scale net-
works are now, in principle at least, within reach. Our Se-
quoia benchmarks had only 251 million LPs, because that
was all we could fit in RAM at the scale of 1 Sequoia rack.
However, at the largest scale of 120 racks, we had enough
RAM available for 100 times as many PHOLD LPs, i.e. 25
billion! By comparison, there are only 7 billion people on
Earth, and there are only 4 billion unique IPv4 addresses,
and our infrastructure and commerce networks are generally
even smaller. We are reaching the point where our simu-
lation capability is limited more by our ability to develop,
maintain, and validate models than by our ability to execute
them.

7. CONCLUSIONS AND FUTURE WORK

In this paper we have demonstrated a new standard in
Time Warp performance by efficiently executing the PHOLD
benchmark model using the ROSS simulator running Time
Warp with reverse computation on 1,966,080 Blue Gene/Q
cores, yielding an unprecedented event rate of 504 billion.
We emphasize that these performance results were obtained



using a computational workload that generates a nearly worst-
case, globally random communication patterns. This contin-
ues an exponential growth in peak PDES benchmark speed,
which prompts us to propose a new performance metric
called Warp Speed which grows logarithmically with PHOLD
event rate. We are now at Warp 2.7.

With these results however, a number of questions still re-
main. First, our results used an MPI everywhere approach
and avoided the complexities associated with using a hy-
brid execution model combining MPI tasks with threads.
At first pass, one might think there would be an immedi-
ate and significant performance gain. However, our concern
with using a hybrid execution model is that it could break
the balanced workload on each MPI tasks. As previously
noted, each MPI rank does a bit of all parallel simulation
activity, from helping to compute GVT to managing MPI
messages and polling the network. With threads it is unclear
how decompose the simulator work to keep that balance.
Adding to the complexity is the fact on Blue Gene/Q sys-
tems PAMI (the low level messaging layer) already creates
lockless, shared-memory pools across MPI ranks that reside
on the same compute node [21]. This functionality appears
similar to the sender and receiver pools used by Fujimoto
and Panesar [14] to greatly improve cache performance on
the KSR shared memory machine. Thus, it is unclear how
moving to threads will actually improve performance.

A second open question is the issue of load balancing at
this scale. While a great deal of research has been done in
the area of dynamic and static load distribution for parallel
discrete event simulation, no research has been done for ir-
regular systems with greater than 100,000 cores, much less
millions of cores. This is a difficult open question.

Third, there is an open issue regarding efficient check-
pointing as part of an overall failure recovery process for
Time Warp simulation executing at this scale. While it
might seem that because a Time Warp system supports a
rollback and recovery mechanism, it is not immediately ob-
vious how to adapt the reverse computation functionality
for use in situations where failures can occur on any proces-
sor cycle or packet transfer instead of at well-defined event
boundaries.

Finally, these results motivate us and hopefully others in
the parallel simulation community to consider a wide range
of new application domains that could benefit from this level
of performance such as multi-network systems like the Hu-
man Sustainability Network, medical applications like dis-
crete human brain models, and new computational methods
like hybrid discrete-continuum models, to name but just a
few.
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